
Hybrid Testbed for Security Research in
Software-Defined Networks

Fritz Windisch∗†, Kamyar Abedi†, Tung Doan‡, Thorsten Strufe∗†§, Giang T. Nguyen‡§
∗Chair of Privacy and Security, Technische Universität Dresden, E-mails: {firstname.lastname}@tu-dresden.de

†Chair of IT Security, KIT E-mails: {firstname.lastname}@kit.de,
‡Haptic Communication Systems, Technische Universität Dresden, E-mails: {firstname.lastname}@tu-dresden.de

§Centre for Tactile Internet with Human-in-the-Loop (CeTI)

Abstract—Tele-operations require secure end-to-end Network
Slicing leveraging Software-Defined Networking to meet the
diverse requirements of multi-modal data streams. Research on
network slicing needs tools to develop prototypes quickly that
work on emulation and practical deployment. However, state-of-
the-art tools focus only on emulation, needing more support for
a mixed testbed, including hardware devices. We decouple the
topology generating from the actual deployment on destination
domains and apply a divide-and-conquer approach. The master
coordinator generates an Intermediate Representation (IR) layer,
a serialization of the topology. Via a toolchain, the worker
coordinators at autonomous systems convert the IR into full or
partial deployment scripts. The testbed introduces a marginal
overhead by design, allowing for flexible deployment of complex
topologies to study secure end-to-end Network Slicing.

Index Terms—Secure Network Slicing, Software-Defined Net-
works, OpenFlow, Network Function Virtualization, LXC

I. INTRODUCTION

In teleoperation, exchanging commands and multi-modal
feedback is a critical process [1]. This communication oc-
curs in video, audio, and haptic signals, each with unique
requirements regarding latency, packet loss, and bandwidth.
Specific Quality-of-Service (QoS) levels must be met to ensure
the highest quality of connection. However, the traditional
approach of overprovisioning often needs to be revised in
this regard, particularly when the connection spans multiple
telecom providers. A more intelligent approach and greater
coordination between providers is required, with technology
playing a crucial role in this effort. Coordination can be
achieved by implementing flexible, reliable solutions requiring
secured end-to-end network slicing [2].

Softwarization technologies such as network function
virtualization (NFV) [3] and software-defined networking
(SDN) [4] are key enablers that introduce computing into the
network. This revolution represents a significant paradigm shift
away from agnostic data delivery, especially for mobile com-
munication networks. One of the critical benefits of NFV/SDN
is the virtualization of the network, which makes it easier to
test and deploy new services and applications. This is because
the boundary between the test and production environments
becomes less noticeable. As a result, network operators can
quickly and efficiently test new services and applications
before rolling them out to their customers, ensuring a seamless
experience for end-users.

In data center testing, network emulations are crucial in cre-
ating virtual environments with realistic properties for Open-
Flow [5]. However, tools like Mininet [6] must be improved
when emulating large networks with high link bandwidths
and traffic volume. One of the issues with existing emulation
tools is that they consider the testbed homogeneous and under
complete control. This, however, is far from the practical
conditions where connections pass through autonomous sys-
tems that make decisions on their own. As such, having a
mix of virtualized and practical testbeds can be challenging,
and coordination in such situations can be complex. Existing
solutions in this field are often limited by design, so partially
accurate simulations (simulations with real-world hardware)
are only sometimes supported. This limitation can signifi-
cantly impact the confidence of actual network performance
in a simulation. This also jeopardizes evaluating security
and resilience in mission-critical contexts, where real-world
hardware would achieve different results. For example, denial-
of-service scenarios can only be evaluated in a similar setup
that is used for the final deployment of a network topology.

We identify the root cause of the existing limitation on the
tight coupling of the topology deployment and the destination
deployment infrastructure, which are mainly computing ma-
chines. Subsequently, we decouple the topology script from the
actual deployment scripts on destination domains and divide-
and-conquer approach. The master coordinator generates an
intermediate representation (IR) layer, a serialization of the
topology. The worker coordinators at autonomous systems
convert the IR into full or partial deployment scripts. The
resulting testbed allows for flexible deployment of complex
topologies with low overhead by design. Furthermore, it allows
for the integration of real-world hardware and, thus, the
evaluation of the security and resilience of topologies, which
is currently not supported by other network testbed solutions.

The rest of the paper is structured as follows. Section II
discusses the work on emulation tools in networking research.
After describing the design of our testbed in Section III, we
elaborate the implementation of the testbed in Section IV and
discuss the implications of the testbed in Section V. Finally,
Section VI concludes this paper.



II. RELATED WORK

This section describes the requirements of a testbed on
mixed infrastructure and discusses the most commonly used
emulators for SDN-capable networks.

A. General requirements

For our use case, we want to simultaneously deploy a
simulated network to multiple virtual and real-world devices.
This is required because we want to measure the network’s
performance in a real-world scenario using real-world network
links and devices to use their corresponding physical proper-
ties. It is equally essential to manage multiple network parts
from multiple locations. Thus, our goal is to create a testbed
that can automatically create a simulated network on multiple
virtual and real-world devices, supporting a decentralized
architecture and multiple link types.

R1 Decentralization of coordination: We require decentral-
ization of our coordination to be able to simulate net-
works with partial trust accurately. This way topologies
can be deployed by multiple coordinators that do not
need to trust each other. We want to be able to boostrap
testbeds across multiple of such domains.

R2 Hybrid: We further want to integrate real-world hard-
ware in our setup to acquire accurate performance and
Quality-of-Service tests, which are essential to evaluate
attack scenarios on topologies in security research.

R3 Performance: We want our testbed abstraction layer to
have a footprint that is as small as possible on our
network throughput and latency.

R4 Scalability: Finally, we require scalability, so that our
topology can contain an arbitrary number of components
and be executed on any network of machines.

Subsequent sections discuss the pros and cons of state-
of-the-art SDN-capable emulation tools regarding the above
requirements. We categorize related work into two groups:
single-host and multi-host emulators.

B. Single-host emulators

Mininet [6] is a network testbed that simulates different
SDN components on a single workstation. It uses processes
and network namespaces of the Linux network implementation
to simulate an entire virtual network. Simulated network
layouts are named topologies. A Python script typically defines
the network topology and can be interacted with by using the
mininet command-line interface. As mininet is also distributed
as a VM, the image can be shared with others to test on the
same network. Additionally, mininet supports in-built network
test commands, such as pinging and sending floods via iperf.

It is important to note that mininet cannot distribute trust
due to its single-machine or virtual machine (VM) operation.
This means that the central coordinator, the machine’s ad-
ministrator, has complete access and control over all testbed
components. As a result, it is impossible to simulate the
autonomy of multiple domains. However, while mininet cannot
integrate real-world hardware, it can still connect different
testbed components using virtual Ethernet devices without

adding significant overhead on the network side, meeting the
necessary performance requirements. It is worth noting that
mininet has limitations in terms of scalability, as it is not
capable of scaling to multiple machines.

Extending mininet, ComNetsEmu [7] provides an SDN and
NFV network emulation environment based on community-
embraced open-source packages and enables replicable re-
search and development on limited resource commodity hard-
ware. ComNetsEmu is a network testbed extending mininet
by supporting emulation in nested docker containers on an
arbitrary docker host as a form of lightweight virtualization.
Due to only extending mininet and not changing the possibility
to include multiple machines in the emulation, the exact
requirements are violated as with mininet. Due to this, it is
also unsuitable for our goals. The authors successfully used
the software to provide hands-on courses and tutorials on the
subject and are looking forward to seeing what the community
will be capable of achieving with it.

C. Multiple-host emulators

Many emulators, such as Maxinet [8] and Distrinet [9], [10]
address single-host emulations’ performance and scalability
bottleneck.

Maxinet is a framework that emulates large software-defined
data center networks using just a few physical machines. It is
an extension of Mininet, enabling the span of an emulated
network over several machines. The paper showcases this
by emulating a data center with 3200 hosts. Maxinet uses a
maxinet frontend server to coordinate multiple maxinet work-
ers. These workers are then used to bootstrap the machines
they run on. Thus requirement R1 remains violated because
the frontend server is used centrally for coordination and
maintains the global state. Integrating real-world hardware will
be challenging because maxinet workers only run on Linux
machines, thus practically rendering meeting requirement R2
impossible, especially on systems that only support configu-
ration and not code execution. Apart from that, Maxinet uses
Generic Routing Encapsulation (GRE) tap tunnels to inter-
connect different machines to build a mesh of nodes. Using
this will reduce the network Maximum Transmission Unit
(MTU) and, thus, the bandwidth, apart from firewall issues
not accepting GRE packets. This violates our requirement R3.
Maxinet does, however, perform well in scale, according to
their paper.

Distrinet is a valuable tool for distributing experiments
across multiple hosts, preventing the overloading of a single
node in critical Mininet scenarios. Distrinet allows for deploy-
ing Mininet topologies on multiple nodes, enabling compo-
nents to communicate across nodes and open up possibilities
for more extensive network topologies. To deploy components
on worker nodes via SSH, Distrinet uses a master node and a
stateful command-line interface that monitors remote services
and enables interactions. To establish a Mininet topology,
mapping components to executing nodes is necessary. Links
between components use VXLAN [11] to create a dynamic
overlay network. Testing functions are consistent with those



in Mininet. Distrinet uses the same API as Mininet to run
experiments on Linux clusters or Amazon EC2 cloud1. It
minimizes the number of hosts required for testing and al-
lows for single-host experimentation. It is great for quick
prototyping and allows direct running of Mininet scripts in a
distributed environment. However, Distrinet’s stateful design
as a central command-line interface and coordinator makes
decentralized and stateless network management impossible,
violating requirement R1. Additionally, the VXLAN-only im-
plementation of Distrinet makes it challenging to integrate
real-world devices into the network (requirement R2) and
creates network overhead in the form of the VXLAN header
(requirement R3). Furthermore, the maintenance of Distrinet’s
codebase has been dormant, making it hard to seek technical
support when needed.

In summary, we need different emulations to set up a testbed
on a mix of virtualized and hardware infrastructure.

III. TESTBED DESIGN

Now we will describe the design of our testbed to meet our
previously mentioned use case. We will introduce our inter-
mediate representation as a concept and further describe our
individual components. Afterwards, we specify our interaction
and monitoring capabilities.

Fig. 1. Architecture of the testbed on mixed infrastructure.

Our approach is to decouple the topology script from the
actual deployment scripts on destination infrastructures. There
are three novel concepts: 1) The intermediate Representation
(IR) layer, 2) Exporter, and 3) Extensions. In the subsequent
sections, we elaborate on fundamental abstractions as building
blocks for complex networks.

A. Component Abstractions

a) Nodes: : A node is a computing machine or a network
switch where the emulator is deployed in part or whole. A
node can also be a physical SDN-capable switch in a practical

1https://aws.amazon.com/ec2/

setup as part of the hybrid testbed. The list of all nodes
provides a bootstrap list for the emulator for initialization.
Nodes represent the underlying infrastructure that an emulated
network is overlayed on top of. Figure 1 illustrates a mixed
infrastructure consisting of two worker nodes (Worker 1 and
Worker 2) and the SDN-capable Switch 1.

b) Hosts: A host is an essential device for computing
or networking deployed on a node. Whenever the node is a
physical switch, the host assumes the role of a networking
device, and its configuration remains consistent across both
virtual and real-world networks. In the case of acting as a
computing device, multiple hosts can run on a single node;
however, running each host in a container or virtual machine
is highly recommended to ensure isolation. Moreover, setting
CPU and memory limits would be a wise move to restrict the
resources.

c) Interfaces: are either real-world or virtual communi-
cation endpoints on nodes and hosts, such as linux network
devices or switch ports.

d) Links: A link connects nodes or hosts through their
interfaces. The emulator offers various link types, both virtual
and real-world, to create intricate networks. Each link type
has its pros and cons, and users need to be able to configure
them accordingly. For example, some links like VxLAN or
MAC Virtual LAN (MacVLAN) can make container inter-
faces accessible to the outside world, while others may have
drawbacks such as reduced MTU due to added headers (as
with VxLAN) or limited exclusivity (as with binding a host
directly to a real-world interface). However, exclusivity can
also be an advantage because it provides full access to the
device. Routing is accomplished by finding the shortest paths
on the simulated network and configuring the routing tables
of all hosts accordingly. Additionally, users can apply various
Quality-of-Service parameters, such as latency and network
jitter, to links.

e) Extensions: An Extension expands a host by com-
monly used functionality, like add-ons. This is, for example,
used for WireGuard [12] tunnels and other network compo-
nents (apart from links) that can commonly be reused for a
whole group of hosts, such as VPN setups. Depending on
the underlying environment, an extension does not have to be
available in all hosts.

B. Intermediate representation

The purpose of the Intermediate representation (IR) is to
allow sharing of topologies among various coordinators and
tools in a toolchain, allowing multiple coordinators to initialize
network settings from pre-shared configurations. Using an IR,
we can create helpful network tools around our topology, such
as topology editors, bootstrappers and deployment scripts,
Graphical User Interface (GUI), monitoring scripts, and more,
without putting all the logic in one program. Without an IR,
using only a Python topology script, it is impossible to achieve
this because configuration data generated dynamically on other
domains might not match our local configuration data (re-
quirement R1), breaking corresponding parts of the simulated



network. The main objective is to be able to use our topolo-
gies in various contexts, whether physical or virtual devices.
Therefore, the testbed includes the simulated topology with
populated data such as IP and MAC addresses, WireGuard
keys, and other dynamic configurations, allowing for sharing
across multiple coordinators and tools. Additionally, it should
contain all the domain data the coordinator is responsible for
and necessary information about external services. The type
of external data required depends on the use case and security
considerations.

The IR layer provides information to other tools and keeps
topology information constant, allowing other states to be
automatically determined. The IR aims to ensure that all
coordinators have matching views of the global topology when
combining their individual views. It includes all topology and
dynamic configuration data, such as IP and MAC addresses
and WireGuard tunnel keys. These data are sufficient and
inclusive to boot up a local part of a testbed. The IEEE 1516
standard uses basic object models to achieve interoperability
between actors in simulations, and the IR is similar to these
constructs, allowing for decentralized management of the
testbed from multiple locations and easy integration of real-
world hardware. It is important to note that the IR is simply
a serialized topology in JSON format generated from subnets,
MAC addresses, and WireGuard key generators. The topology
script automatically fills in the topology and uses the IR as
input for other tools. The IR is always with the coordinators
at the orchestrator PC, and nodes only see SSH commands or
shell scripts.

C. Bootstrap, Interaction and Monitoring

The testbed, similar to mininet and distrinet, allows for the
generation of topologies using a local script. The resulting
representation can then be deployed to multiple nodes using
an exporter or bootstrapper. The coordinator manually maps
the hosts to nodes based on the available real-world topology.
Once deployed, the testbed can be interacted with using
monitoring tools that utilize the generated representation as
a source of information. The testbed automatically detects
available nodes and hosts by polling them through SSH or
other protocols. It is up to the user to distribute the load
and specify which host goes where. The testbed supports
dynamic starting and stopping of nodes and hosts and standard
test features like sending traffic, such as ping and flood, and
monitoring the results. Alternatively, deployment through bash
scripts without network connectivity is also possible.

IV. IMPLEMENTATION

This section describes the technical implementation of the
above requirements and design. We begin by describing our
used software components and technologies and then give an
overview of the technical realization of our testbed solution.
The testbed itself has been implemented in python, as python
is commonly used in research today and is a solid choice
for bootstrapping a network due to its script-like nature and

easy readability. The emulator’s source code is available on
Github2.

A. Software platform

The target of our testbed will be Unix-based systems, even
though integration of other hardware should be possible. The
coordination of the testbed will always be performed from a
Unix-based host to have a standard set of utilities available.
This will also make it possible to run the testbed from
Windows through Windows Subsystem for Linux (WSL) or
MacOSX, even though these possibilities will not be actively
tested or maintained. Common Unix command line tools used
contain bash and nettools, which provide a set of networking
utilities such as netroute-ip, ifstat, and ping.

a) Hosts: We use the Linux container framework LXC3

to build host containers due to its distinctive advantages.
LXC allows for easy management and network orchestration
of containers and offers the CPU and memory restriction
parameters we require. However, our emulator is independent
of any particular virtualization technology. It can also leverage
an alternative deployment form with minimum adaptation
efforts, such as containing hosts in Linux network namespaces.

b) Links: To build links between containers, we will be
using virtual ethernet pairs (veth) and standard Linux bridges.
We will use MacVLAN, VXLAN, or direct links to build links
between containers and external services. Macvlan links bind
on a node interface and receive their IP directly from the
real-world network (e.g., via DHCP or static configuration)
while allowing multiple MacVLAN connections to share one
node interface. VXLAN links bind to a node interface and
send/receive data using VXLAN headers. Direct links will
bind on a host interface of the corresponding node and use
a real-world link completely. All link types offer restricting
traffic and limiting QOS parameters by using qdiscs, a tool to
modify network traffic in real time, which is part of the Unix
net-tools mentioned above.

c) Control plane: Further building blocks contain
widely-used software tools. The SDN controller uses
RYU [13], while the SDN switch exploits Open vSwitch, and
a link encryption utility leverages wireguard. For stress testing
networks, we use iperf3. A control network to interact with
the testbed further can be established using MacVLAN devices
implemented as a service extension. This will also optionally
set up an ssh server on the corresponding service to provide
the ability to interact with the service accordingly.

B. Workflow to deploy testbed

To provide decentralization and a stateless testbed as op-
posed to mininet or distrinet, we will use a different approach
when building and deploying network topologies. In this sec-
tion, we will explain our topology definition and deployment
strategies.

2https://github.com/FriwiDev
3https://github.com/lxc/lxc/



Fig. 2. Basic workflow to deploy a topology script using our solution.

1) Topology Script: We implemented the testbed and the
topologies in Python. The user can similarly submit topology
definitions as in mininet or distrinet. This will help users
migrate their existing networks to our testbed solution. A
topology script defines a set of nodes, services, and their
corresponding links. The testbed executes this script to obtain
the final list of components.

2) Intermediate Representation: Once the topology script
completes building the list of components, the topology will
be populated (e.g., addresses assigned) and exported to an
intermediate representation. This representation contains a full
or partial view of the testbed in JSON format that contains
static information on the whereabouts of testbed components.

1 # Generate an intermediate representation
from our topology script

2 cd testbed
3 ./generate_topology.sh <topology_script>.py

3) Exporters: After successfully generating our interme-
diate representation, we can deploy the compiled topology
through various methods. Two primary options are currently
available: i) exporting the testbed to a file and ii) deploying
it live via SSH. Each option offers distinct advantages and
limitations, which we will explore in greater depth in the
following sections. Ultimately, the deployment method choice
will depend on our project’s specific needs and goals.

a) To file/Offline: When exporting the testbed to a file,
scripts, and resources will be created for each node to deploy
the testbed offline. Testbed users can copy the files corre-
sponding to each node onto the respective node and deploy
the components using the start and stop scripts. This option
is useful when deploying parts of the testbed on a host where
SSH is unavailable. It is possible to deploy parts of the
testbed offline due to the static design of the intermediate
representation. All local and remote components are known,
static, and can be targeted statically. However, this is different
for MacVLAN links in DHCP-based networks, so additional
configuration on the DHCP server and the topology may be
required.

1 # Export our topology to file structures that
are then used for deployment

2 cd testbed
3 ./export_topology.sh
4 # Deploy using our generated start script
5 cd export/<node_name>
6 ./start.sh

b) SSH: We will use SSH as a remote access solution to
configure foreign nodes because it has powerful capabilities
and is available on almost every system. It is also possible
to configure real-world hardware in the testbed automatically
by specifying different instructions for these devices. Through

the SSH exporter, selected parts of the testbed and the whole
testbed can be set up and taken down by issuing remote
commands to the respective nodes. However, direct access to
the corresponding nodes from the deploying host is required.
It is important to note that the testbed will not set up access
via SSH on the remote nodes, as this is still up to the user.

1 # Deploy all components via SSH using CLI
2 cd testbed
3 ./remote_topology.sh start_all

A graphical user interface has been created to display
the current state of the testbed, which is made possible by
connecting to remote nodes, as illustrated in Fig. 3. This
interface enables users to start, stop, and delete components
and run tests on the testbed. Powerful command-line utilities
with similar capabilities and a Python API are also available.

1 # Launch the GUI
2 cd testbed
3 ./gui.sh

Fig. 3. Graphical user interface featuring an example topology.

C. Monitoring

In order to keep track of the performance and essential data
on a testbed in real time, one can use SSH commands to
monitor the components on the network. This can be achieved
through command-line scripts that provide updates on the
status, traffic, and accessibility of the components. There are
multiple options to show the statistics, such as via a command-
line interface, graphical user interface, or Python API, as
illustrated in Fig. 4. Monitoring all nodes is only possible
via SSH access, already available through the SSH exporter.
It may be possible to extend the monitoring to include other
protocols in the future.

V. DISCUSSION

This section discusses the implications of the testbed’s
design and implementation regarding the design requirements.

A. Decentralization of coordination

Our idea revolves around utilizing an intermediate repre-
sentation with pre-determined information about the domains
involved, such as IP addresses, MAC addresses, and other



Fig. 4. Screenshot of a network benchmark at a network node.

configuration data. This enables a network administrator,
acting as a coordinator, to deploy individual components
without understanding the entire topology. It is crucial to
consider what information coordinators require to perform
their duties securely. Nonetheless, automatic deployment can
be accomplished if they have partial access to information
from other sources, consequently fulfilling requirements.

B. Hybrid

Our approach to designing hosts and nodes is object-
oriented, which enables us to apply abstract configurations
to multiple target platforms. Currently, our implementation
supports Linux-based platforms, but we can quickly expand it
to include other platforms in the future. The testbed supports
various link types, including direct links that allow hosts to
communicate with other network devices without limitations
by binding them to actual interfaces. Additionally, we can
reach real-world hardware, which fulfills the requirement of
setting up and accessing real-world hardware for the rest of
the simulated network. This will also enable us to do security
research closer to reality by leveraging the performance of
real-world devices.

C. Performance and Scalability

It is essential to consider various deployment types when
testing our implementation. We want to ensure we meet
the requirement without adding extra cost compared to a
baseline setup. There are a few options that we can consider.
Firstly, we can use a real-world host. This setup provides
equal performance as setting things up manually since the
configuration is the same for the host and the node it runs on.
Another option is to use a Linux node that runs multiple hosts.
This solution is unique because we can run hosts in Linux
network namespaces, eliminating container cost penalties. By
directly linking the hosts to a real-world interface, we remove
any abstraction cost from the network layer and achieve
maximum performance. Since both of these scenarios meet
the requirement of minimal network performance impact, we
can confidently check off this requirement.

Due to our design, we can scale the testbed to multiple ma-
chines, thus effortlessly passing the requirement for scalability
vertically and horizontally. Subsequently, the testbed’s design
and implementation meet all four requirements.

VI. CONCLUSION

We address the challenge of orchestrating testbeds with
mixed infrastructure, including virtual and hardware nodes.
The testbed decouples the topology-generating process from
deployment one by introducing an Intermediate Representa-
tion. The testbed seamlessly integrates hardware and virtual-
ized nodes, offering cutting-edge deployment, test, and eval-
uation mechanics with live monitoring, thus making it ideal
for security and network research. We offer a command-line
interface, python API, and user-friendly graphical interface, all
designed for easy extension to accommodate future distributed
network architectures.

ACKNOWLEDGMENT

Funded in part by the German Research Foundation (DFG,
Deutsche Forschungsgemeinschaft) as part of Germany’s Excellence
Strategy – EXC 2050/1 – Project ID 390696704 – Cluster of
Excellence “Centre for Tactile Internet with Human-in-the-Loop”
(CeTI) of Technische Universität Dresden, the Federal Ministry of
Education and Research of Germany in the programme of “Souverän.
Digital. Vernetzt.” - Joint project 6G-life - project ID: 16KISK001K
and project Open6GHub - project ID: 16KISK010, and the Helmholtz
Association through the KASTEL Security Research Labs (HGF
Topic 46.23).

REFERENCES

[1] F. Fitzek, S. Li, S. Speidel, T. Strufe, M. Simsek, and M. Reisslein, Tac-
tile Internet: With Human-in-the-Loop. Elsevier, Jan. 2021, publisher
Copyright: © 2021 Elsevier Inc.

[2] D. Sattar and A. Matrawy, “Towards secure slicing: Using slice isolation
to mitigate ddos attacks on 5g core network slices,” in 2019 IEEE
Conference on Communications and Network Security (CNS), 2019, pp.
82–90.

[3] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[4] M.-K. Shin, K.-H. Nam, and H.-J. Kim, “Software-defined networking
(sdn): A reference architecture and open apis,” in 2012 International
Conference on ICT Convergence (ICTC), 2012, pp. 360–361.

[5] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation using
openflow: A survey,” IEEE Communications Surveys Tutorials, vol. 16,
no. 1, pp. 493–512, 2014.

[6] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: Association for Computing Machinery, 2010.

[7] Z. Xiang, S. Pandi, J. Cabrera, F. Granelli, P. Seeling, and F. H. P. Fitzek,
“An open source testbed for virtualized communication networks,” IEEE
Communications Magazine, vol. 59, no. 2, pp. 77–83, 2021.

[8] P. Wette, M. Dräxler, A. Schwabe, F. Wallaschek, M. H. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined networks,”
in 2014 IFIP Networking Conference, 2014, pp. 1–9.

[9] G. Di Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and C. Lac,
“Distrinet: A mininet implementation for the cloud,” vol. 51, no. 1, 2021.

[10] G. D. Lena, A. Tomassilli, D. Saucez, F. Giroire, T. Turletti, and C. Lac,
“Mininet on steroids: exploiting the cloud for mininet performance,”
in 2019 IEEE 8th International Conference on Cloud Networking
(CloudNet), 2019, pp. 1–3.

[11] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, U. Sridhar,
and M. Bursell, “Virtual extensible local area network (vxlan): A
framework for overlaying virtualized layer 2 networks over layer 3
networks,” in RFC 7348, August 2014.

[12] J. A. Donenfeld, “Wireguard: next generation kernel network tunnel.”
in NDSS, 2017, pp. 1–12.

[13] N. TELEGRAPH and T. CORPORATION, “Ryu: A component-based
software-defined networking framework,” in OSDI ’14: 11th USENIX
Symposium on Operating Systems Design and Implementation. Broom-
field, CO: USENIX Association, October 2014.


	Introduction
	Related work
	General requirements
	Single-host emulators
	Multiple-host emulators

	Testbed Design
	Component Abstractions
	Intermediate representation
	Bootstrap, Interaction and Monitoring

	Implementation
	Software platform
	Workflow to deploy testbed
	Topology Script
	Intermediate Representation
	Exporters

	Monitoring

	Discussion
	Decentralization of coordination
	Hybrid
	Performance and Scalability

	Conclusion
	References

